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Abstract. The importance of studying matter at high ρ increases as more astrophysical data becomes
available from recently launched spacecrafts. The importance of high-T studies derives from heavy-ion
data. In this paper we set up a formalism to study the nucleons and isobars with long- and short-range
potentials non-pertubatively, bosonizing and expanding semi-classically the Feyman integrals up to one
loop. We address the low-density, finite-T problem first, the case relevant to heavy-ion collisions, hoping
to address the high-density case later. Interactions change the nucleon and isobar numbers at different ρ
and T non-trivially.

PACS. 21.65.+f Nuclear matter

1 Introduction

Isobars (∆’s) play a very important role in nuclear physics.
Two-pion exchange with a ∆ intermediate state is known
to produce the intermediate-range attraction between nu-
cleons [1]. Many attempts have been made to extract the
effect of ∆ intermediate states in nuclear matter dynamics,
and microscopical calculations have shown the overwhelm-
ing relevance they have in binding of nuclear matter [1,2].

∆ is the next excited state in the nucleon spectroscopy
with a large degeneracy factor (4×4 for spin and isospin).
Paradoxically however not too much efforts have been de-
voted to extract the amount of ∆ population in the nuclear
matter ground state [3,4]. It is, on the other hand, conceiv-
able that the small numbers found so far (ref. [3] clearly
overestimates the ∆ component of the nuclear ground
state) suggest that the presence of ∆’s could at most in-
duce rather small effects in the ground-state properties.
Only recently the use of modern N -N interaction has re-
newed the interest in this field [5], but still dynamical
aspects like spectral functions and response functions de-
serve further investigations even taking advantage of the
modern computing facilities.

Even disregarding, however, the relevance of tradi-
tional nuclear matter calculations, new achievements both
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on the astrophysical sector and on the side of ultra-
relativistic heavy-ions collisions suggest to explore the
properties of the hadron matter at finite (high) temper-
ature. One should keep in mind in fact that in the lat-
ter case a low-density hadronic matter is expected to be
the relic of a phase transition to and from a quark-gluon
plasma phase. The knowledge of the nuclear matter prop-
erties at low density and high temperature is thus linked
(maybe not in a simple way) to the signals that such a
phase transition has indeed occurred. But such conditions
seem to be much more sensitive to the presence of ∆’s, as
real ∆’s can be produced.

This has already been established by calculations
where non-interacting nucleon and isobar excited states
are embedded in a thermal bath (see for example Bebie et
al. [6] and Dey et al. [7]). Interactions between nucleons
(N in short) and ∆’s being strong, it is very difficult to
handle. A non-perturbative treatment is mandatory.

The framework we use in this paper to deal with a
system of interacting nucleons and isobars is provided by
the path integral technique developed by one of us and
his co-workers [8–11]. It involves bosonisation arising from
integration over the fermionic fields.

For non-interacting fermions the methodology is sim-
ple. However, for long-range one-pion exchange potential
(OPEP) or short-range correlations (SRC in short) non-
perturbative semi-classical approximation schemes are
necessary. This provides a mean field. Higher-order cor-
rections can be put onto it.
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√
det(−Vπ)
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i
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∫ β
0 dτ

∫
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π (|x−y|)σi(y)+i
∫ β
0 dτ

∫
d3xσi(x)ψ†(x)Γiψ(x), (8)

The method is described in short in the next section.
The nucleon and the isobar, being heavy particles can be
treated non-relativistically. This allows the Fermi integra-
tions and the Pauli principle to be dealt with. As the den-
sity ρ increases, the baryons are packed more closely so
that the Pauli principle is expected to play a crucial role.

2 The partition function for the nucleon
interacting with the pion

To exemplify, we consider a system of nucleons interacting
with pions. OPEP potential between nucleons and pions
is written as

Vπ(q) = Γ
(1)
i Vπ(q)Γ (2)

i , (1)

where

Vπ(q) = −f2
πNN

m2
π

q2

q2 + m2
π

(2)

and

Γ
(1)
i = σ1 · q̂τi . (3)

The partition function in the grand canonical ensemble,
in terms of path integrals, reads

Z = e−βΩ = Tre−β(H−µN) =∫
D[ψ†(x), ψ(x)]e−

∫ β
0 dτ [H(τ)−µN(τ)] , (4)

where H ,µ and N are the Hamiltonian, the chemical po-
tential and the number operator, respectively.

For non-interacting nucleons, we can easily evaluate
the partition function in terms of the Fourier transforms
for the fields ψ(q, ωn)

Z0 = Z =
∫

D[ψ†, ψ]e
∑

n

∫
d3qψ†(−q,−ωn)G−1

0 (q,ωn)ψ(q,ωn) ,

(5)

where G0(q, ωn) is the free Green’s function at finite tem-
perature:

G0(q, ωn) = − 1
q2

2M
− µ − iωn

, (6)

with

ωn =
(2n + 1)π

β
; (7)

the functional integration becomes the determinant of the
Green’s function.

To evaluate the partition function with OPEP inter-
action, eq. (4), an approximation scheme of boson loop
expansion is used. This scheme has been explained in de-
tails in refs. [9–11]. Basically, functional integral over the
fermion fields leaves an effective bosonic Lagrangian which
in the zeroth order gives rise to a mean field like that of
RPA and in the first order to the one-boson loop approx-
imation.

This is achieved by availing of the Hubbard-
Stratonovitch transformation [12–14] to convert the po-
tential part inside the Feynman integrals into a functional
integral. For example, the potential inside eq. (4), under
the Hubbard-Stratonovitch transformation, becomes

see eq. (8) above

where the measure over σi is defined as

D[σi(x)] −→
∏
k

dσi(xk)√
2π

.

Performing the functional integration over the fermionic
fields, it becomes

Z =
√

det(−Vπ)
∫

D[σi]e
1
2 σiVπσi det

[
G−1

0 − σiΓi

]
. (9)

Since G−1
0 and σiΓi commute

Z =
√

det(−Vπ) detG−1
0

∫
D[σi]e

1
2 σiVπσi+Tr log[I−G0σiΓi].

(10)

3 Introduction of ∆’s, ρ-mesons and
short-range correlations (SRC)

The simplest way to introduce the ∆’s in this formalism
is to generalise the nucleon field to a column vector

ψ =
(

ψN

ψ∆

)
(11)

and the Γi, eq. (3), as

Γi =

(
σ · qτi

fπN∆

fπNN
S · qTi

fπN∆

fπNN
S† · qT †

i
fπ∆∆

fπNN
S · qTi

)
. (12)

Free G0
∆ becomes

G0
∆(q, ωn) = − 1

q2

2M∆
+ δM − µ∆ − iωn

, (13)
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where δM = M∆ − M . Matrices Si and Ti are the gener-
ators of the 3/2 representation of the SU(2) group (see,
for instance [11]). But Si and Ti are the familiar 4 × 2
transition spin-isospin operators (see, for example [15]).

Further, a reasonable description of the dynamics of a
nuclear system interacting via meson exchange needs to
account, in order to be realistic, of short-range correla-
tions (SRC). These SRC have been introduced in nuclear
systems in many ways, for example through the Landau-
Migdal parameter g′. It has been shown by [11] that at the
one-boson loop level, beyond the Landau-Migdal theory,
a momentum dependence of g′ is necessary. Now there are
two independent parameters, namely the value of the func-
tion g′(q) at the origin and a cut-off that kills the effective
interaction due to nucleon-nucleon (or nucleon-∆) short-
range repulsion. Both parameters are density dependent,
in a way which is not known.

A simpler treatment to deal with SRC is given by
Brown et al. [16] which is successfully applied by Oset
and co-workers (see, among many other papers, [17]). It
amounts to multiply the nucleon-nucleon interaction V(r)
by the two-body correlation function g(r), i.e.

V(r) −→ g(r)V(r) (14)

and further to approximate g(r) with

g(r) � 1
3
j0(qcr) , (15)

where qc is taken roughly equal to the ω-mass. This ap-
proach not only works well but also is almost parameter
free. Density dependence of the correlations is automatic-
ally taken care of. It is to be noted that it amounts to fix
g′ at about 0.7.

Of course a ∆-hole pair can be excited by a ρ-meson
as well. We shall see in the following that a ρ-meson ex-
change, with the same scheme for SRC as before, can also
be included in the formalism. In the following calculations,
qπ
c = 770 MeV/c and qρ

c = 1200 MeV/c.

4 The loop expansion

We now expand the partition function, eq. (10), semi-
classically. At the saddle point, i.e. at the mean-field level,
σi = 0 and the partition function becomes

Zmean field =
√

det−Vπ detG−1
0 . (16)

Quadratic deviations of the field from its mean-field
value lead to∫

D[σi]e
1
2 σiV−1

π σi− 1
2TrσiΓiG0σjΓjG0 =

{
detV−1

π − TrΓiG0ΓjG0

}− 1
2 (17)

so that the partition function, eq. (10), at the one-loop
order becomes

Z = detG−1
0 eTr log[I−VπΓiG0ΓjG0] =

Z0e
Tr log[I−VπΓiG0ΓjG0] , (18)

where

Z0 =
∏
q

(
1+e

−β
[

q2

2M −µN

])∏
q

(
1+e

−β
[

q2

2M∆
+δM−µ∆

])
.

(19)

The grand potential, Ω = − 1
β log Z, in one-loop order

becomes

Ω1-loop = − 1
β
{log Z0 + Tr log [I − VπΓiG0ΓjG0]} . (20)

Thus for the zeroth-order part, we get

Ω0 = −V

β

∫
d3q

(2π)3

{
log

[
1 + e

−β
(

q2

2M −µN

)]

+ log
[
1 + e

−β
(

q2

2M∆
+δM−µ∆

)]}
. (21)

Derivatives of Ω with respect to µN and µ∆ result in N
and ∆ numbers, respectively. Therefore,

〈NN 〉 = V

∫
d3q

(2π)3
n0

N (q) , (22)

〈N∆〉 = V

∫
d3q

(2π)3
n0

∆(q) , (23)

where

n0
N (q) =

1

1 + e
β

(
q2
2M −µN

) , (24)

n0
∆(q) =

1

1 + e
β

(
q2

2M∆
+δM−µ∆

) . (25)

For first-order correction, we define

Π0 =
1
q2

TrΓiG0ΓiG0 (26)

(the trace makes i �= j vanishing) which turns out to be the
generalisation of the Lindhard function to the finite tem-
perature case. We have three different Π0’s, corresponding
to the N particle-N hole, the ∆ particle-N hole and the
∆ particle-∆ hole propagators. The last one vanishes at
the T → 0 limit:

Π0
NN (q, νn) = 4

∫
d3k

(2π)3
n0

N (k) − n0
N (q + k)

iνn + ε(k) − ε(q + k)
, (27)

Π0
N∆(q, νn) =

16
9

∫
d3k

(2π)3

× n0
N (k)−n0

∆(q+k)
iνn+ε(k)−ε∆(q+k)+µ∆−µN

+ (N ↔ ∆) , (28)

Π0
∆∆(q, νn) = 16

∫
d3k

(2π)3
n0

∆(k)−n0
∆(q+k)

iνn+ε∆(k)−ε∆(q+k)
, (29)

where the numbers in front are contributions from the
spin-isospin traces and

νn =
2nπ

β
. (30)
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The parity of these functions with respect to νn simplify
them further.

Thus the total Π is given by

Π = f2
πNNΠ0

NN + f2
πN∆Π0

N∆ + f2
π∆∆Π0

∆∆ , (31)

so that the one-loop grand potential, eq. (20), is

Ω1-loop = Ω0 −
1
β

Tr log
[
I + Vπq2Π

]
=

Ω0 +
1
β

∞∑
n=1

1
n

Tr [VπΠ]n . (32)

Using the identity 1
n =

1∫
0

λn−1dλ and substituting

Vλ
π = λVπ, we get

Ω1-loop = Ω0 +
1
β

∞∑
n=1

1∫
0

dλ

λ
Tr

[
Vλ

πΠ
]n

. (33)

Further, summation of the series results in

Ω1-loop = Ω0 +
1
β

1∫
0

dλ

λ
Tr

Vλ
πΠ

1 − Vλ
πΠ

. (34)

The remaining trace means integration over the 3-
momentum and sum over the frequencies.

Number of ∆’s and nucleons can now be obtained eas-
ily.

〈N∆〉 = 〈N∆〉0 − 1
β

Tr
Vπ

1 − VπΠ

∂Π

∂µ∆
(35)

and

〈NN 〉 = 〈NN 〉0 − 1
β

Tr
Vπ

1 − VπΠ

∂Π

∂µN
. (36)

The zeroth-order quantities are given by (22) and (23).
To evaluate eqs. (35) and (36) we find that first-order cor-
rection term (n = 1 of eq. (32))

〈NN 〉1st-order = − 1
β

Tr
∂

∂µN
[VπΠ]

needs added attention because it is ill-defined as in the
case of self-energy of the nucleon in a medium :

Σ(k, ωn) =
1
β

∑
n′

∫
d3q

(2π)3
G0(q, ωn′)Vπ(|k − q|). (37)

We need a convergence factor eiωn′η which produces an ex-
tra factor n0

N (q). The derivative with respect to µN gives

〈NN 〉1st-order = 12
∫

d3q

(2π)3

×
∫

d3k

(2π)3
Vπ(|k − q|) ∂

∂µN

[
n0

N (q)n0
N (k)

]
+

16
3

∫
d3q

(2π)3

∫
d3k

(2π)3
∂

∂µN

×
[
n0

N (q)n∆(k) + n0
N (k)n∆(q)

]
Vπ(|k − q|) . (38)

Fig. 1. One-loop diagram for the number of ∆ and nucleons.

Similarly, one gets for the ∆ contribution

〈N1st-order
∆ 〉 =

16
3

∫
d3q

(2π)3

×
∫

d3k

(2π)3
∂

∂µN

[
n0

N (q)n∆(k) + n0
N (k)n∆(q)

]
× Vπ(|k − q|) + 48

∫
d3q

(2π)3

×
∫

d3k

(2π)3
Vπ(|k − q|) ∂

∂µN
[n∆(q)n∆(k)] . (39)

The remaining part of the series can be evaluated
straightforwardly:

− 3
β

∑
n

∫
d3q

(2π)3
V2

πΠ

1 − VπΠ

∂Π

∂µN,∆
. (40)

by evaluating Π0’s (eqs. (27)-(29)).
Some remarks are not out of place here.

1. Sum in eq. (40) can be further transformed into an in-
tegral over the imaginary axis. But this does not make
numerical calculation easier.

2. The present formalism amounts to evaluate the dia-
gram of fig. 1, where the black dot denotes the ∂Π/∂µ
insertion and the dashed circle the RPA-dressed pion.
Since pions are spin-longitudinal, while the ρ’s are
spin-transverse and in an infinite medium Π conserves
the elicity, the two kinds of mesons cannot mix to-
gether. Thus the ρ-meson contribution simply amounts
to the similar diagram with the pion exchange poten-
tial replaced by the ρ exchange with a factor 2 in front
of Π coming from spin traces.

3. In general, ∂Π
∂µ in eq. (40) obtained from eqs. (26)-(30)

becomes ill-defined for n = 0. But if eqs. (26)-(30) de-
scribe analytical functions, even for n = 0, the singu-
larity can be separated from the integral and handled
analytically.

5 Numerical results: densities and chemical
potential

The previous section provided the tool needed for the
evaluation of 〈NN 〉 and 〈N∆〉. At the equilibrium µN =
µ∆ = µ and hence both 〈NN 〉 and 〈N∆〉 can be regarded
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Fig. 2. Chemical potential of a system of nucleons and ∆’s
interacting via pion exchange as a function of temperature.
Lines as explained in the text.

as functions of µ. Putting for short 〈NN 〉 = NN (µ) and
〈N∆〉 = N∆(µ) it is also clear that

NN (µ) + N∆(µ) = A = V ρ = V
2k3

F

3π2
, (41)

where A is the baryon number and the last equality can be
regarded as a definition of an effective Fermi momentum.
Here µ is the input of the problem. If instead we choose
A in order to fix the thermodynamical conditions of the
system we need to consider (41) as an equation for µ and
solve it numerically.

Figure 2 displays the results of such a calculation. It
shows the behaviour of the chemical potential at the equi-
librium for different values of the temperature and the
nuclear density. The graph contains only pion exchange
at three different levels of complexity, namely calculations
up to second order (dashed lines), full one-loop calculation
(solid line) and full calculation with dynamical pion (dot-
ted line). We remember that in the frame of Matsubara-
Green’s function the pion propagator reads

∆π =
1

ω2
n + q2 + m2

π

.

The figure displays five bunches of lines, corresponding to
five different densities, namely (starting from the above)
ρ/ρ0 = 0.2, 0.4, 0.6, 0.8, 1; of course ρ0 denotes the normal
nuclear density. Remarkably these three different dynam-
ics are almost completely superimposed: only looking very
carefully at the figure one sees that the dashed line is a
little bit higher than the other two, that instead are prac-
tically coincident.

The second plot we present (fig. 3) displays instead the
ratio between nucleon and ∆ density keeping fixed the sum

Fig. 3. Ratio ρ∆/ρN as a function of temperature. Lines as
explained in the text. The total densities are 0.2 ρ0, 0.4 ρ0,
0.6 ρ0, 0.8 ρ0 and 1 ρ0 in ascending order. Only pions are
accounted for.

Fig. 4. Chemical potential of a system of nucleons and ∆’s
interacting via pion plus ρ as a function of temperature. Lines
as explained in the text.

ρN + ρ∆ = ρ again as a function of the temperature and
with five bunches as before. Of course this time the highest
bunch corresponds to the highest density. Here the plots
are much more sensitive to the dynamics.

Insofar we have only considered exchange of pions. Let
us add some more dynamics by including the exchange of
correlated ρ-mesons; the results are shown in figs. 4 and 5.
Remarkably, the ρ-meson exchange lowers significantly the
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Fig. 5. Ratio ρ∆/ρN as a function of temperature, with pion
plus ρ exchange. Lines as explained in the text.

chemical potential, while the ratio ρ∆/ρN as a function of
the temperature is sensible to it only in the low-T region,
where the full dynamical calculation shows a remarkable
reduction of the ρ∆/ρN ratio. At higher T instead the
effect fades out.

The model at hand contains only a few number of pa-
rameters. Coupling constants and cut-off are more or less
well defined (we use here standard coupling Cρ = 2.3) the
only crucial parameter being the one connected to SRC,
and in particular qπ

c . Thus, in figs. 6 and 7 we plot again
the temperature and the ratio ρ∆/ρN for the most com-
plete dynamical case (π plus ρ fully dynamic at the one-
loop order but with different values of qπ

c , namely qπ
c = 650

MeV/c (solid line) qπ
c = 770 MeV/c (dashed line) and

qπ
c = 900 MeV/c (dotted line); the same conventions as

in the two previous figures are adopted. We observe that,
while the chemical potential is almost insensitive to the
variations of qπ

c , the ratio ρ∆/ρN , on the contrary, shows
that this ratio sensibly increases with qπ

c , in particular in
an intermediate range of the temperature, while at tem-
peratures of the order of 150 MeV the effect seems to
fade out.

6 Numerical results: the momentum
distribution

The momentum distribution displays an impressive de-
pendence upon the temperature. We define the momen-
tum distribution through the expression

〈N〉N = Tr
∫

d3q

(2π)3
nN (q) , (42)

〈N〉∆ = Tr
∫

d3q

(2π)3
n∆(q) , (43)

Fig. 6. Chemical potential of a system of nucleons and ∆’s
interacting via pion plus ρ as a function of temperature. Lines
as explained in the text.

Fig. 7. Ratio ρ∆/ρN as a function of temperature, with pion
plus ρ exchange. Lines as explained in the text.

the trace being taken over spin-isospin degrees of freedom
(4 for nucleons, 16 for ∆’s). In practice this amounts to
take the integrand of all the previous calculations. Thus,
the result is a by-product of the previous calculation. The
results are plotted in fig. 8 for different temperatures and
densities. The normalisation is everywhere to a θ(kF − q)
when T → 0.
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Fig. 8. Momentum distribution of nucleons (solid line) and ∆’s (dashed line) at different densities and temperatures.
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Fig. 9. Momentum distribution multiplied by q2 of nucleons (solid line) and ∆’s (dashed line) at different densities and
temperatures. The dotted line corresponds to the free Fermi gas at 0 temperature.
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It is impressive to remark that the distribution is im-
mediately spread to high momenta with increasing tem-
perature. Remind that the distribution is weighted with
a q2 in the Jacobian, so that the high-momentum compo-
nent becomes more and more important. An even more
striking insight can be obtained by plotting the quantity
q2n(q) and by comparing it with the free Fermi gas re-
sult at 0 temperature, as we do in fig 9. There it is clear
that the areas of the curves is preserved while the shape
is enormously modified.

Furthermore, at high temperature the dependence
upon the density seems to become weak and something
like a universal behaviour could be suggested.

7 Discussions

People speculate about the number of isobars in a hot soup
of hadrons produced in a heavy-ion collision. Even assum-
ing that the short time available in heavy-ion collisions
is enough to thermalize the baryons and produce a uni-
form collective flow, the dynamics discussed in this paper
is not sufficient to enlight the great variety of processes
that could occur at finite temperature.

The vacuum at finite temperature is known to contain
pions, since these particles are light. Dey et al. [18] have
shown that finite temperature will couple channels with
different parity and isotopic spin. For example, the ρ- and
the A1-meson along with a longitudinal pion mix to or-
der T 2. The poles do not move till the next order T 4. In
the same way, the nucleon at finite T will couple to the
∆1/2 state and the isobar to the nucleon excited state,
N∗

3/2(1520) as well as the odd-parity isobar ∆(1700) [19].
Further, if we focus on the relic of a previously realized

quark-gluon condesate, then the strangeness contribution
should be relevant, and investigations on strange hyperons
is also suggested [20].

Coming to more conventional degrees of freedom, it
was shown by Bedaque [21] in a long letter, using chi-
ral perturbation theory, that the nucleon mass increases
a little, but that the nucleon acquires a substantial width
and the mass is decreased so that the isobar-nucleon split-
ting becomes smaller. In the chiral limit Bedaque’s result
would appear in the order T 4.

The present considerations seem thus to suggest as fu-
ture perspectives the extension of the present one-loop cal-
culation, on one side, to the study of other observables in
a hadron gas, like for instance effective masses and widths

and also the entropy of the system and, on the other side,
to the extension of the present scheme to a richer dynamics
encompassing vector mesons and strange hadrons.

A further interesting development, to be carried out in
the future, will be to extract, from the present formalism,
the corresponding behaviour as an expansion in powers of
the temperature.

J.D. and M.D. acknowledge hospitality at Abdus Salam ICTP
and a D.S.T. research grant no. SP/S2/K18/96, Government
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References

1. R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. C 149,
1 (1987).

2. R. Cenni, F. Conte, G. Dillon, Nuovo Cimento 43, 39
(1985).

3. M.R. Anastasio et al., Nucl. Phys. A 322, 369 (1979).
4. R. Cenni, F. Conte, U. Lorenzini, Phys. Rev. C 39, 1588

(1989).
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